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MMAT5030 Notes 7

1. The Method of Separation of Variables

In the last lecture we studied the initial-boundary problem for the heat equation under
the Dirichlet condition (the temperature is fixed to zero at both ends of the rod)


ut = κuxx in [0, l]× (0,∞) ,

u(x, 0) = f(x) in [0, l],

u(x, t) = 0 at x = 0, l and t > 0,

(1)

as well as under the Neumann condition (the rod is insulated at both ends).


ut = κuxx in [0, l]× (0,∞), κ > 0,

u(x, 0) = f(x) in [0, l],

ux(x, t) = 0 at x = 0, l and t > 0.

(2)

It turns out the first problem can be solved in terms of a sine series while the second one
in terms of a cosine series. However, when it comes to more general boundary conditions,
a straightforward appeal to Fourier series may not work. To illustrate this point, let us
consider the problem


ut = uxx in [0, π]× (0,∞) ,

u(x, 0) = f(x) in [0, π],

ux(0, t) = 0, u(π, t) = 0, t > 0,

(3)

We have simplified the problem by setting κ = 1 and l = π. It does no harm in the
mathematical point of view, since the general case can be reduced to this normalized case
by rescaling. However, even in a simplified form, it is not clear at all how to represent
the solution as a cosine, a sine or a Fourier series. We will use the method of separation
of variables to solve the problem.

The decisive step in this method is to find all special solutions of the form X(x)T (t).
Indeed to satisfy the equation ut = uxx, we have

T ′(t)X(x) = T (t)X ′′(x).

Dividing both sides of this equation by TX, we have

T ′

T
=
X ′′

X
.
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As the left hand side of this equation is a function of t while its right hand side depends
only on x, we must have T ′ = −λT and X ′′ = −λX for some constant λ. Taking account
into the boundary conditions, the function X must satisfy the “eigenvalue problem”

{
X

′′
+ λX = 0,

X ′(0) = 0, X(π) = 0 .
(4)

We look for those λ so that this problem admits non-zero (or nontrivial) solutions. We note
that this is a homogeneous differential equation with homogeneous boundary conditions.
Therefore, if X is solution, every scalar multiple of X is a also a solution. We divide into
three cases according to the sign of λ.

Case (i) λ > 0. In this case the general solution of the equation is given by

X(x) = C cosµx+D sinµx, µ =
√
λ .

We have X ′(x) = −µC sinµx + µD cosµx . So 0 = X ′(0) = µD implies D = 0. Next
0 = X(π) = C cosµπ implies µπ = (n+ 1/2)π, that is, µ = n+ 1/2, n ≥ 0.

Case (ii) λ = 0. In this case X(x) = C + Dx. X ′(0) = 0 implies D = 0 and X(π) = 0
implies C = 0. There is no non-trivial solution in this case.

Case (iii) λ < 0. The general solution X(x) = Ceµx + De−µx , µ =
√
−λ. We have

X ′(x) = Cµeµx −Dµe−µx . The boundary conditions are

C −D = 0 , Ceµπ +De−µπ = 0 .

The first equation shows that C = D. By plugging this into the second equation, (eµπ +
e−µπ)C = 0, which implies C = D = 0. Again there is no non-trivial solution.

In conclusion, this eigenvalue problem admits non-trivial solutions if and only if λn =
(n+ 1/2)2, n ≥ 0, and the corresponding eigenfunction is a non-zero multiple of

Xn(x) = cos(n+ 1/2)x.

From T ′/T = −λn, we get T (t) = ce−(n+1/2)2t , c 6= 0. It follows that the heat equation
together with ux(0, t) = 0 and u(π, t) = 0 admits infinitely many solutions given by

e−(n+1/2)2t cos(n+ 1/2)x , n ≥ 0 .

Bearing in mind that every non-zero multiple of these solutions is again a solution. We
let the formal solution of this new initial-boundary problem (3) be

u(x, t) =
∞∑
n=0

Ane
−(n+1/2)2t cos(n+ 1/2)x , An ∈ R.
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In order that this solution satisfies the initial value, it is necessary to assume the initial
function admits the following expansion

f(x) =
∞∑
n=0

An cos(n+ 1/2)x .

At this point the method of separation of variables has completed its job. The rest is now
the job of hard analysis.

Actually, there is a tricky way to solve this problem by extending the solution as a
4π-periodic function, see exercise. In the following we use separation of variables to study
more complicated boundary conditions. It shows that Fourier series cannot be applied
any more.

Consider the (normalized) heat equation subject to Robin boundary condition

ux − au = 0 at x = 0,
ux + bu = 0 at x = π, a, b > 0.

(5)

Again we first look for separated solutionsX(x)T (t). The same as in the previous example,
X must satisfy the eigenvalue problem

{
X

′′
+ λX = 0,

X ′ − aX = 0 at 0, X ′ + bX = 0 at π.
(6)

In the following we solve this eigenvalue problem. To simplify the situation, let’s
assume

√
ab 6= n+ 1/2 for any n ≥ 0. All the remaining cases are discussed in W Strass’

book “Partial Differential Equations”.

Case (i) λ > 0. The general solution is again

X(x) = C cosµx+D sinµx, µ =
√
λ > 0,

where C and D are arbitrary constants. To satisfy the boundary conditions we need to
find nontrivial C and D so that{

−aC + µD = 0
(−µ sinµπ + b cosµπ)C + (µ cosµπ + b sinµπ)D = 0.

To have a non-zero pair of solution (C,D) it is required

det

(
−a µ

−µ sinµπ + b cosµπ µ cosµπ + b sinµπ

)
= 0,

i.e.,

−a(µ cosµπ + b sinµπ) + µ(µ sinµπ − b cosµπ) = 0 ,
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or
−(a+ b)µ cosµπ + (µ2 − ab) sinµπ = 0 .

Observe that cosµπ = 0 iff µ = n+ 1/2. When this happens, the equation above implies
that µ2 = (n+ 1/2)2 = ab which is in conflict with our assumption

√
ab 6= n+ 1/2 for any

n ≥ 0. Hence cosµπ 6= 0. We can divide the above equation by cosµπ to get

tanµπ =
(a+ b)µ

µ2 − ab
(7)

We conclude that (6) has a non-zero solution if and only if µ satisfies (7). By plotting
graphs (examining the intersections of the curve y = tan πµ and the curve y = (a +
b)µ/(µ2 − ab) regarding µ as the independent variable), we see that there are infinitely
many solutions where the corresponding µn satisfy n − 1 < µn < n, or (n − 1)2 < λn <
n2, n ≥ 1. Corresponding to λn, the solution is given by a non-zero multiple of

cosµnx+
a

µn
sinµnx ,

after using the first boundary condition −aC + µD = 0, that is, D = a/µ when C = 1.

Case (ii) λ = 0. The general solution is given by

X(x) = C +Dx,

where the constants C and D satisfy

D − aC = 0, (1 + πb)D + bC = 0.

The determinant is given by

det

(
1 −a

1 + bπ b

)
,

that is, (a+ b) +abπ which is not equal to 0. Therefore, this linear system can only admit
zero solution.

Case (iii) λ < 0. The general solution is

X(x) = Ceµx +De−µx , µ =
√
λ .

To satisfy the boundary conditions, C and D should satisfy

C(µ− a)−D(µ+ a) = 0, C(µ+ b)e2µπ −D(µ− b) = 0 .

We have

det

(
µ− a µ+ a

e2µπ(µ+ b) µ− b

)
= 0,

that is,
µ2 − (a+ b)µ+ ab

µ2 + (a+ b)µ+ ab
= e2µπ .
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Noting that the right hand side is always greater than 1 and the left hand side cannot
exceed 1, we see that this linear system has no non-zero solution.

We conclude that all separated solutions are given by non-zero multiples of

Xn(x) = cosµnx+
a

µn
sinµnx , n ≥ 1 .

The following orthogonality result is a positive evidence showing a “Fourier series theory”
may be developed for these functions.

Proposition 7.1. For n,m, n 6= m,
ˆ π

0

Xn(x)Xm(x)dx = 0 .

Proof. It is tedious to check the orthogonality condition directly. Instead we use an
inspiring argument. Since both Xm and Xn satisfy (6) for λ = µ2

n and µ2
m respectively,

we have

−µ2
m

ˆ π

0

Xm(x)Xn(x)dx =

ˆ π

0

X ′′m(x)Xk(x)dx

= X ′m(x)Xn(x)
∣∣∣π
0
−
ˆ π

0

X ′m(x)X ′n(X)dx

= X ′m(x)Xn(x)
∣∣∣π
0
−Xm(x)X ′n(x)

∣∣∣π
0

+

ˆ π

0

Xm(x)X ′′n(x)dx

= −µ2
n

ˆ π

0

Xm(x)Xn(x)dx ,

where we have used the boundary conditions in (6) to cancel the two boundary terms. As
µn 6= µm, it forces ˆ π

0

Xm(x)Xn(x)dx = 0 .

By multiplying with a suitable constant cn, the functions ϕn = cnXn satisfy

‖ϕn‖ ≡

√ˆ π

0

ϕ2
n(x)dx = 1,

for all n, hence {ϕn} forms an orthonormal set in R[0, π].

Naturally one hopes that the solution of the initial-boundary problem for the heat
equation under the Robin condition is

u(x, t) =
∞∑
n=1

Ane
−λntϕn(x).
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In order u(x, t) satisfies the initial condition we require An be determined from the ex-
pansion

f(x) =
∞∑
n=1

Anϕn(x),

or equivalently, using Proposition 7.1,

An =

ˆ π

0

f(x)ϕn(x)dx.

This approach can be fully justified if we can establish that {ϕn} is a complete orthonor-
mal set in R[0, π] as well as that those nice convergence results concerning Fourier series
hold in the present context. All this could be done by more sophisticated methods, we
will not elaborate on this point. We will be satisfied as long as the formal solution is found.

2. The Dirichlet Problem for the Laplace Equation

The Laplace equation

∆u ≡ ∂2u

∂x21
+
∂2u

∂x22
+ · · ·+ ∂2u

∂x2n
= 0 ,

is perhaps the most important partial differential equation. It arises from various context.
For instance, the temperature distribution in a plane set satisfies the two dimensional heat
equation

ut = κ∆u

for some κ > 0. As time tends to ∞, the temperature distribution would tend to an
equilibrium state which is independent of time. So the equilibrium state u(x) satisfies
the Laplace equation ∆u = 0 in this plane set. Be cautious it is not always equal to a
constant because the non-triviality of the boundary data. In the one dimensional case,
the temperature distribution on the rod eventually satisfies uxx = 0, which can be solved
readily to get u(x) = a+ bx, that is, it is linear function. However, in higher dimensions
there are many many functions satisfying the Laplace equation. These functions are called
harmonic functions. It is interesting to see that the method of separation of variables can
be applied to the Dirichlet problem for the two dimensional Laplace equation on the disk{

∆u = 0 in D,
u = ϕ on C,

(8)

where D = {(x, y) : x2 + y2 < 1} and C is the unit circle. The trick of solving (8) is
to write things in the polar coordinates. We let u(x, y) = v(r, θ) where the variables are
related by

r =
√
x2 + y2, tan θ =

y

x
.
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By differentiating the relation u(x, y) = v(r, θ), we use the chain rule in advanced calculus
to get

ux = vr
∂r

∂x
+ vθ

∂θ

∂x
,

uxx =

(
vrr

∂r

∂x
+ vrθ

∂θ

∂x

)
∂r

∂x
+ vr

∂2r

∂x2
+

(
vθθ

∂θ

∂x
+ vθr

∂r

∂x

)
∂θ

∂x
+ vθ

∂2θ

∂x2
.

Adding up with a similar formula for uyy, we have

∆u = vrr

[(
∂r

∂x

)2

+

(
∂r

∂y

)2
]

+ 2vrθ

(
∂θ

∂x

∂r

∂x
+
∂θ

∂y

∂r

∂y

)

+

[(
∂θ

∂x

)2

+

(
∂θ

∂y

)2
]
vθθ + vr∆r + vθ∆θ .

Using

θx =
−y
r
, θy =

x

r
, rx =

x

r
, ry =

y

r
,

and

θxx =
2xy

r4
, θyy =

−2yx

r4
, rxx =

y2

r3
, ryy =

x2

r3
,

we obtain

∆u =
∂2v

∂r2
+,

1

r

∂v

∂r
+

1

r2
∂2v

∂θ2
.

Traditionally people do not make a difference between u and v in notation. In the following
we use u to represent the same function no matter the independent variables are x, y or
r, θ. The boundary value problem (8) is now transformed to

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
= 0 inR,

u(1, θ) = ϕ(θ) θ ∈ [−π, π],

(9)

where R = {(r, θ), 0 ≤ r < 1, θ ∈ [−π, π]} is a rectangle and ϕ is 2π-periodic. We seek
separated solutions of the form R(r)Θ(θ). Plugging it into (9), we obtain

Θ

(
R

′′
+

1

r
R′
)

+
R

r2
Θ

′′
= 0.

In other words,
r2

R

(
R

′′
+

1

r
R′
)

= −Θ
′′

Θ
.

As in the cases before we must have

R
′′

+
1

r
R′ =

−λ
r2
R,
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and
Θ

′′ − λΘ = 0,

for some constant λ. As Θ is a 2π-periodic function, it forces λ = −n2, n = 0, 1, 2, · · · .
For n ≥ 1,

Θ(θ) = an cosnθ + bn sinnθ, an, bn constants.

It is a constant when n = 0. Correspondingly we have

r2R
′′

n + rR′n − n2Rn = 0.

This ordinary differential equation is readily solved to get

Rn = c1r
n + c2r

−n, c1, c2 constants,

(see exercise). Since Rn(r) is at least continuous inside D and in particular at the origin,
c2 must vanish. When n = 0, R0 is a constant. We conclude that any special solution of
the Laplace equation of the form R(r)Θ(θ) is given by a scalar multiple of

rn(an cosnθ + bn sinnθ), n ≥ 0.

In case the boundary data ϕ has the Fourier expansion

ϕ(θ) =
a0
2

+
∞∑
n=1

(an cosnθ + bn sinnθ) , (10)

our solution is given by

u(r, θ) =
a0
2

+
∞∑
n=1

rn(an cosnθ + bn sinnθ). (11)

We have

Theorem 7.2 For every piecewise smooth, continuous 2π-periodic ϕ whose Fourier
series is given by (10), the function defined in (11) is continuous in D ∪ C, infinitely
differentiable in D, and solves (8)/(9).

You may skip the following proof which is similar to that of Theorem 5 in Notes 6.

Proof. In terms of polar coordinates, it suffices to show the function is continuous in
R ∪ ∂R (∂R is the boundary of R) and infinitely differentiable inside R. To establish
continuity, we observe that the Fourier series of ϕ′ is given by

ϕ′(θ) ∼
∞∑
n=1

(nbn cosnθ − nan sinnθ) .

By Parseval’s identity or Bessel’s inequality,

∞∑
n=1

n2(|an|2 + |bn|2) ≤ C ,
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for some constant C depending on ‖ϕ′‖. It follows that

∞∑
n=1

(|an|+ |bn|) =
∞∑
n=1

(n|an|+ n|bn|)n−1

≤ 1

2

∑
n=1

(n2|an|2 + n2|bn|2) +
∞∑
n=1

1

n2

< ∞ .

Using
|rn(an cosnθ + bn sinn)θ| ≤ |an|+ |bn|

and the above estimate, we can apply the M-test to the domain R ∪ ∂R to conclude that
the series defined in the right hand side of (11) converges uniformly to the function u in
R ∪ ∂R. By Continuous Theorem (Notes 6) we know that u is continuous in R ∪ ∂R.
Also by pointwise convergence and (10) u(1, θ) = ϕ(θ), that is, u satisfies the boundary
condition.

It remains to show that (11) is infinitely differentiable inside D. In this connection
we would like to apply the Differentiation Theorem (Notes 6). Hence it suffices to verify
the series obtained by differentiating the right hand side of (11) finitely many times are
uniformly convergent in a smaller disk

D(r0) = {(r, θ) : r ∈ [0, r0], θ ∈ [−π, π] } .

By differentiating the right hand side of (11) k-many times in r we get

∞∑
n=k

C(n, k)rn−k (an cosnx+ bn sinnx) , C(n, k) = n(n− 1) · · · (n− k + 1) .

Next we differentiate it in θ finitely many times. Depending on whether the number is
even or odd, we have

∞∑
n=k

C(n, k)(−1)mn2mrn−k (an cosnx+ bn sinnx) ,

and
∞∑
n=k

C(n, k)(−1)mn2m+1rn−k (an sinnx+ bn cosnx) .

Noting that C(n, k)n2m+1 ≤ nk+2m and(
nk+2mrn−k0

)1/n → r0 < 1, as n→∞ ,

taking ε = (1− r0)/2, there is some n0 such that∣∣(nk+2mrn−k0 )1/n − r0
∣∣ < 1− r0

2
, ∀n ≥ n0 .
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It follows that

0 ≤ nk+2mrn−k0 <

(
1 + r0

2

)n
→ 0 ,

as n→∞. We can find some n1 such that nk+2mrn−k0 ≤ 1 for n ≥ n1.

C(n, k)n2m+1rn−k (|an|+ |bn|) ≤ |an|+ |bn|, ∀n ≥ n1 .

By the M-test is convergent in D(r0). The same treatment applies to the second series as
well. By the M-test we conclude that both series converge uniformly in D(r0).

It is amazing that the solution given by (11) can be written in closed form. In fact,
recalling that

an =
1

π

ˆ π

−π
φ(α) cosnαdα , n ≥ 0 ,

and

bn =
1

π

ˆ π

−π
φ(α) sinnαdα, n ≥ 1 ,

we have

u(r, θ) =
1

2π

ˆ π

−π
φ(α)dα +

∞∑
n=1

rn

π

ˆ π

−π
φ(α)(cosnα cosnθ + sinnα sinnθ)dα

=
1

2π

ˆ 2π

0

φ(α)[1 + 2
∞∑
n=1

rn cosn(θ − α)]dα.

Using the formula (see exercise)

1 + 2
∞∑
n=1

rn cosnx =
1− r2

1− 2r cosx+ r2
,

we arrive at the Poisson’s formula

u(r, θ) =
1− r2

2π

ˆ π

−π

φ(α)dα

1− 2r cos(θ − α) + r2
. (12)

Using Poisson’s formula we can prove the following sharpening version of Theorem
7.2.

Theorem 7.3. For every continuous, 2π-periodic function ϕ, (12) defines an in-
finitely differentiable function in D which solves the equation in (8). Furthermore, u(r, θ)
tends to ϕ(θ) as r → 1.

Comparing with Theorem 9.4, the improvement is that we do not need the boundary
value to be piecewise smooth. The proof can be found in chapter 2 of [SS].
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Finally let us convert Poisson’s formula back to the rectangular coordinates as follows.
Let (x, y) = (r cos θ, r sin θ) be in D and (x′, y′) = (cosα, sinα) a point on the boundary
circle. The angle between these two vectors is given by θ − α or α − θ. By the law of
cosine,

(x− x′)2 + (y − y′)2 = ||(x, y)− (x′, y′)||2

= ||(x, y)||2 + ||(x′, y′)||2 − 2||(x, y)||||(x′, y′)|| cos(θ − α)

= 1 + r2 − 2r cos(θ − α).

On the other hand, the map α 7→ (cosα, sinα), α ∈ [−π, π], is a parametrisation of the
unit circle. We have

ds =
√

(cosα)′2 + (sinα)′2 dα = dα.

Therefore, Poisson’s formula in rectangular coordinates is given by

u(x, y) =
1− r2

2π

ˆ
C

φ(x′, y′)

(x− x′)2 + (y − y′)2
ds(x′, y′), (x, y) ∈ D,

where the integral is the line integral along the circle C : r = 1.


